
Abstract. A homotopy method is presented that locates
both minimizers and saddle points of energy functions in
an e�cient manner. In contrast to other methods, it
makes possible the exploration of large parts of potential
energy surfaces. Along a homotopy path stationary
points of odd and even order occur alternately. A path
tracing procedure requiring only gradients and at most
one evaluation of the Hessian matrix is given. Test
results on a model potential and three MINDO/3
potentials are reported.
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1 Introduction

Numerical procedures that locate both minimizers and
saddle points of energy functions in an e�cient manner
are indispensable for the exploration of potential energy
surfaces (PESs). Quasi-Newton methods (cf., e.g. [1±3])
locate stationary points very e�ciently, provided a good
initial guess is available. Unfortunately, often only poor
guesses are available, especially for saddle-point search-
es. Of particular interest are therefore numerical proce-
dures that can scan large parts of PESs in the search for
stationary points. Such a procedure is introduced in the
present paper. It is based on the homotopy principle, i.e.
the principle of continuous deformation; cf. e.g. [4].
Mezey [5] has used this principle to describe reaction
mechanisms by classes of homotopic reaction paths. In
the present paper the homotopy principle is applied to
the gradient of a restriction E of an energy function E0 to
locate stationary points of E0. The homotopy principle
cannot be applied to the gradient of E0 because the
stationary points of E0 are not isolated. Some basic
relations between the energy functions E and E0 are
given in Sect. 2. The graph of E0, i.e. the set

f�x;E0�x��
�� x 2 R3ng (n . . . number of nuclei�, is the

PES of the molecular system under consideration.
Suppose x� is a stationary point of the restricted en-

ergy function E, which is de®ned on Rm, m � 3nÿ 6.
Then x� is a root of the gradient g of E, i.e. g�x�� � 0.
Thus, the stationary points of E can be determined by
solving the equation

g�x� � 0: �1�
Here, to solve Eq. (1), the function g is embedded in a
one-parametric family of continuous functions h��; q�,
q 2 �0; 1� such that h��; 0� equals a (trivial) function f for
which a root x0 is known, and h��; 1� � g, i.e.
h�x; 1� � g�x� for all x 2 Rm. (Recall that the notation
h��; q� means that the parameter q is ®xed whereas the
®rst variable varies.) In this way the function f is
continuously deformed to the gradient g by the homo-
topy function h. Under certain conditions, which are
discussed in Sect. 3, the solution set of the equation

h�x; q� � 0 �2�
consists of continuous curves (homotopy paths) which
join a root x0 of the function f and a root x1 of the
gradient g. Thus, a solution of Eq. (1) can be determined
by tracing a homotopy path of Eq. (2). In Fig. 1 the idea
of the homotopy method is illustrated. The graph of the
homotopy function h is a two-dimensional surface over
R� �0; 1� � R2. The boundaries of the surface are
de®ned by the linear function f � h��; 0� and the
nonlinear function g � h��; 1�. The intersection of the
graph of h with the hyperplane R2, which is nothing else
than the solution set of Eq. (2), determines a continuous
curve which joins the root x0 of f and a root x1 of g.
Thus x1 can be located by following the homotopy path
that originates at x0. For example, the function

h�x; q� :� g�x� ÿ �1ÿ q�g�x0�
is a homotopy function. The point x0 is a root of the
function h�x; 0� � f �x� � g�x� ÿ g�x0� and h�x; 1� �
g�x� for all x of the domain of g. In Sect. 4 further
homotopy functions appropriate to locate stationary
points of energy functions are given.

The most important properties of the homotopy
method are the following:
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1. The method can be started at an arbitrary point.
2. The type of the stationary point that will be located

can be determined a priori.
3. More than one stationary point can be located along

a homotopy path.

Property (2) is of particular interest in locating saddle
points while property (3) enables scanning of large parts
of an energy surface. In Sect. 3 the mathematical
background material for the homotopy method is
provided. In Sect. 5 a path tracing algorithm is given.
Test results are reported in Sect. 6.

2 Some background material

The molecular systems considered in the present paper
are always constrained in the following manner: One
nucleus is ®xed at the origin and, after rotation around
the origin, another one is only allowed to move along the
x-axis. The motion of a third nucleus is constrained to
the xy-plane. The energy function E of the constrained
molecular system is the restriction of the energy function
E0 of the (unconstrained) molecular system.

The vector of all 3n nuclear coordinates is denoted by
x̂ whereas x denotes the vector that is obtained from x̂
by cancelling six coordinates of x̂. The gradient and the
Hessian matrix of E at a point x are denoted by g�x� and
H�x�, respectively.

The following theorem justi®es the computation of
stationary points of an energy function E0 via the
described restriction E of E0.

2.1 Theorem 1

If x� 2 R3nÿ6 is a stationary point of the restriction E of
E0 then the augmented vector x̂� 2 R3n is a stationary
point of the unrestricted energy function E0.

The theorem can be proven using the fact that the
sum and the torque of the gradient forces vanish.

The question arising now is whether a stationary
point x� of E and the augmented stationary point x̂� of
E0 possess the same order. (Recall that the order of a
stationary point is equal to the number of negative
eigenvalues of the Hessian matrix at that point.) An
answer is given by Theorem 2.

2.2 Theorem 2

Suppose x� is a regular point of the restricted energy
function E, i.e. detH�x�� 6� 0. If x� is a stationary point of
order k of E then x̂� is a stationary point of order k of the
energy function E0.

The theorem can be proven by the Sturmian separa-
tion theorem [6].

3 Homotopy method

In recent years homotopy methods for solving nonlinear
equations have extensively been explored [4, 7, 8]. Here
only some basic features should be recalled. Suppose
h : Rm �R 7!Rm is a continuously di�erentiable func-
tion that ful®lls the following assumptions:

(A1) There is a point u0 � �x0; q0� 2 Rm �R such that
h�u0� � 0.

(A2) h��; 1� � g.
(A3) The Jacobian matrix h0�u0� has maximal rank, i.e.

rank h0�u0� � m.

A point u � �x; q� 2 Rm �R is called a regular point
(singular point) of h if rank h0�u� � m (rank h0�u� < m�.

3.1 Theorem 3

There is a smooth curve c : I 7!Rm �R for some open
interval I � �a; b� containing zero such that for all s 2 I
[4]:

1. c�0� � u0,
2. h�c�s�� � 0,
3. rank h0�c�s�� � m,
4. c0�s� 6� 0.

Notice that the �m;m� 1�-matrix h0�u�; u 2 Rm �R, can
be decomposed in the following manner:

h0�u� � �h0x�u� h0q�u��; u � �x; q� ; �3�
where h0x�u� :� @h�u�=@x is an �m;m�-matrix and
h0q�u� :� @h�u�=@q is an m-vector.

Henceforth the curve c�s� is parametrized with res-
pect to the arc length s. Di�erentiation with respect to
the arc length is indicated by a dot.

3.2 Theorem 4

If ÿ1 < a then the curve c�s� converges to a limit point
ulim as s! a; s > a, which is a singular point of h. An
analogous statement holds if b <1 [4].

A solution set of h is illustrated in Fig. 2. A path
tracing started at the point u0 follows the curve c�s� until
the level q � 1 is reached at the point u1 � �x1; 1�. The
point x1 is a stationary point of the energy function E. If
the curve tracing is continued beyond that point, a sec-
ond solution u2 � �x; 1� is located at the level q � 1. The
point x2 is a further stationary point of E. The curve

Fig. 1. Homotopy surface and homotopy path
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terminates at the limit point ulim. The procedure pre-
sented in the appendix jumps over such points and
continues the curve tracing by following one of the bi-
furcating curves. A solution curve need not reach the
level q � 1. This case, however, occurs very seldom in
our experience.

An implicitly de®ned curve c�s� is called positively
(negatively) oriented if the determinant of the augmented
matrix

A�s� � h0�c�s��
_c�s�>

� �
is positive (negative).
The next theorem underlies almost all path tracing
procedures.

3.3 Theorem 5

Let c�s� be a positively oriented solution curve which
satis®es c�0� � u0 and h�c�s�� � 0 for s in some open
interval I containing zero. Then for all s 2 I, the tangent
vector _c�s� satis®es the following conditions [4]:

1. h0�c�s�� _c�s� � 0;
2. k _c�s�k � 1;
3. detA�s� > 0.

If the Jacobian matrix h0�u� has maximal rank then
the system (1±3) possesses one and only one solution. In
other words, at each regular point of h a tangent vector
can be de®ned. Subsequently at a regular point u of h the
vector uniquely determined by the conditions (1±3) is
called a tangent vector and denoted by t�h0�u��. At iso-
lated singular points the solution curves of Eq. (2) cross
each other, and the system (1±3) does not possess any
unique solution. By virtue of Theorems 3 and 5, each
solution curve of Eq. (2) satis®es the di�erential equa-
tion

_u � t�h0�u��: �4�
Notice that Eq. (4) is de®ned only for the regular points
of h. It is easy to verify that

h�u�s�� � const

for each trajectory u�s� of Eq. (4). Hence, the trajectory
passing through u0 belongs to the solution set of Eq. (2).
This observation enables us to solve Eq. (2) by integrat-
ing Eq. (4). Since the desired trajectory satis®es Eq. (2)
and Eq. (4) it can be traced by a predictor-corrector
method. This means that ®rst a simple (low cost)
integration step, e.g. an Euler step, can be taken and
thereafter the approximate curve point is improved by a
local equation solver, e.g. a Newton-like method [1±3].
The procedure described in Sect. 5 follows this strategy.
Notice that each solution curve c�s� of Eq. (2) consists
of a path of con®gurations x�s� and a parameter curve
q�s�. The path of con®gurations describes a continu-
ous deformation of the initial con®guration. At each
curve point c�s� � �x�s�; q�s�� the equation

_q�s� detA�s� � det h0x�c�s�� �5�
holds [7]. Observe that the matrix h0x�c�s�� is singular if
and only if _q�s� � 0 or detA�s� � 0. A point u� � c�s�� is
called a turning point of the curve c�s� if _q�s� changes the
sign at s� and detA�s�� 6� 0. Because of Theorem 3 point
(3) and Eq. (3) rank h0x�c�s�� � mÿ 1 for all s 2 I. Thus,
by virtue of Eq. (5), rank h0x�u�� � mÿ 1 at a turning
point u� of the curve c�s�. If h0x�u� is a symmetric matrix
then one and only one eigenvalue of the matrix h0x�u��
vanishes. If detA�s�� � 0, the point u� � c�s�� is called a
bifurcation point of c�s�. By virtue of Theorems 3 and 4
each bifurcation point of c�s� is a limit point of c�s�. In
Fig. 2 the points utp1 and utp2 are turning points whereas
the point ulim is a bifurcation point. Suppose the points
u1 � �x1; q1� and u2 � �x2; q2�; qi 2 �0; 1�, are strongly
joined by the curve c�s� � �x�s�; q�s��, i.e. c�s1� � u1 and
c�s2� � u2; s1 < s2, and q�s� j2 �0; 1� for all s 2 �s1; s2�. If
the matrices h0x�u1� and h0x�u2� (cf. Eq. (3)) are regular,
then

sign det h0x�u2� �
sign det h0x�u1� if q1 6� q2
ÿsign det h0x�u1� if q1 � q2

�
�6�

cf. [9]. In words, if the points u1 and u2 belong to one
and the same level, along the segment of the curve c�s�
which strongly joins these points an odd number of
eigenvalues of the matrix h0x�u� changes the sign. If the
points u1 and u2 belong to di�erent levels, an even
number of eigenvalues of h0x�u� changes the sign (zero is
regarded as an even number in this context). Thus by
Eq. (6) the type of a stationary point of E that is located
by a path tracing procedure can be determined a priori.

4 Homotopy functions

In the present section some homotopy functions appro-
priate to determine stationary points of an energy
function E : Rm 7!R, are given and commented upon.

4.1 Standard homotopy

h�x; q� :� g�x� ÿ �1ÿ q�g�x0�; x; x0 2 Rm:

Obviously, the point u0 � �x0; 0� ful®lls assumption
(A1). Since h��; 1� � g, assumption (A2) is also ful®lled.
If H�x0� is regular, the Jacobian matrix

Fig. 2. Set of roots of a homotopy function

257



h0�u� � �H�x� g�x0��; u � �x; q�; �7�
of h has maximal rank at u0 � �x0; 0� (assumption A3).
Conditions which guarantee that a solution curve of the
standard homotopy is passing through a solution of
Eq. (1) are given in [10]. By di�erentiating Eq. (2) the
equation

H�x� _x � ÿ _qg�x0� �8�
is obtained for the standard homotopy. Because along a
standard homotopy path

g�x� � �1ÿ q�g�x0� ; �9�
the homotopy method can be regarded as a continuous
Newton method if the standard homotopy is employed.
For more details see [10].

Suppose the curve c�s� � �x�s�; q�s�� strongly joins
the points u0 � �x0; 0� and u1 � �x1; 1�. Then, by virtue
of Eq. (6)

sign detH�x1� � sign detH�x0�
since h0x�u��H�x�; u��x; q�. Particularly, if detH�x0�>
0, then the point x1 is a minimizer or a saddle point of
even order of E. If detH�x0� < 0, then x1 is a saddle
point of odd order or a maximizer of E. If the
embedding parameter q is a monotonically increasing
function on the interval �0; s1�, the matrices H�x0� and
H�x1� possess the same numbers of positive and negative
eigenvalues because of Eq. (5). Hence, in this case x1 is a
minimizer of E if H�x0� is positively de®nite and a saddle
point of ®rst order if H�x0� possesses one and only one
negative eigenvalue. The procedure given in Sect. 5
monitors the derivative of the embedding parameter q
along the homotopy path. Thus the type of a located
stationary point can be determined without evaluating
the Hessian matrix, provided the path has not passed
through a bifurcation point.

4.2 Convex homotopy

h�x; q� :� qg�x� � �1ÿ q�M�xÿ x0�; x; x0 2 Rm :

Here M denotes an arbitrary regular �m;m�-matrix.
Mostly M � H�x0� or M � I (identity matrix) are
chosen. The convex homotopy with M � I is called
Marquardt homotopy. It is easy to verify that h�x0; 0� � 0
and h��; 1� � g. Thus the assumptions (A1) and (A2) are
ful®lled. A simple straightforward calculation shows
that

h0�u� � �qH�x� � �1ÿ q�M g�x� ÿM�xÿ x0��;
u � �x; q� : �10�

Thus in the case of the Marquardt homotopy �M � I�,
the initial guess u0 � �x0; 0� is always a regular point
of h. If M � H�x0�, u0 is a regular point of h if H�x0�
is a regular matrix. If the initial guess u0 � �x0; 0� and
a solution point u1 � �x1; 1� are strongly joined by a
homotopy path, the equality

sign detH�x1� � sign detM

holds (cf. Eqs. 6 and 10). Hence, in the case of the
Marquardt homotopy a path tracing always provides a
minimizer ®rst. If the path is followed beyond that point
a saddle point can be found (cf. Eq. 6). If M � H�x0� is
chosen the stationary point encountered ®rst is deter-
mined by the sign of the Hessian matrix at the starting
point.

4.3 d-trick homotopy [11]

h�x; q� :� g�x� ÿ �1ÿ q�d; x; d 2 Rm; d 6� 0 :

If a solution of Eq. (1) is known, an additional solution
can be computed by the d-trick homotopy. The choice of
the vector d is not restricted in any way. The assump-
tions (A1)±(A3) are ful®lled if x0 is a stationary point of
E at which the Hessian matrix of E is regular. Also in the
case of the d-trick homotopy the homotopy method can
be regarded as a continuous Newton method (g�x0� has
to be reset by d in Eq. 8). The Jacobian matrix is given
by

h0�u� � �H�x� d� : �11�
Conditions which ensure that the d-trick homotopy
locates additional solutions are discussed in [11]. Notice
that after passing through the hyperplane q � 1 a
standard homotopy path coincides with the d-trick
homotopy path, d � g�x0�. The vector d determines
the direction along which the path of con®gurations
leaves the stationary point. This follows from the
equation

H�x� _x � ÿ _qd �12�
which is obtained by di�erentiating the equation

g�x� ÿ �1ÿ q�d � 0 : �13�
Thus the d-trick homotopy enables the searches to start
in a prescribed direction. In particular, if d, kdk � 1, is
an eigenvector of the Hessian matrix H�x0�, then

_x�0�
_q�0�

� �
� 1�������������

1� k2
p ÿd

k

� �
where k denotes the eigenvalue which belongs to d.
Hence the path of con®guration leaves the initial point
along one of the directions of principal curvature.
Suppose x1 is a minimizer of E and the curve c�s�
strongly joins the points u1 � �x1; 1� and u2 � �x2; 1�.
Then, because of Eq. (6), x2 is a saddle point of odd
order of E. Therefore, in this situation the path tracing
method can be regarded as an uphill walking method. In
contrast to the walking methods by Cerjan and Miller
[12] and Nichols et al. [13] the homotopy method does
not require the computation of any eigenvector. Observe
that the curve c�s� possesses one turning point at least
(Fig. 1). If utp is the ®rst turning point which is
encountered along c�s� � �x�s�; q�s��, then utp is just
the point at which the curve x�s� leaves the educt region
(more popular ``educt valley'') and enters the saddle
point region. Here educt region means the largest
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neighbourhood of x1 on which the energy function E is
convex.

5 A path tracing procedure

The following predictor-corrector scheme is used to
follow a homotopy path numerically (see Fig. 3): If u is
an arbitrary point of a solution curve c�s�, ®rst an Euler
step of length s along the tangent vector t�h0�u�� is taken,
i.e.

v :� u� st�h0�u�� : �14�
Thereafter the predictor v is corrected toward the
solution curve by a Newton step, i.e.

w :� vÿ h0�v�yh�v� :
Here h0�v�y denotes the Moore-Penrose inverse of h0�v�;
see step 3 of procedure PATH in the appendix. The
point w is an approximate solution to the minimization
problem [4]

min
z
kzÿ vk

���h�z� � 0
n o

:

The time-consuming evaluations of the Jacobian matrix
h0�u� are avoided by Georg's generalized Broyden
update method [4]. The tangent vectors are also updated
[4] such that no linear equation needs to be solved. The
details are given in the appendix. For the step size
control an algorithm by Rheinboldt and Burkhardt [14]
has been adapted. The step size is always chosen so that
the predictor points are situated within a certain vicinity
of the solution curve. More precisely, in some vicinity of
a curve point ui the curve c�s� is approximated by the
quadratic Hermite-Birkho� interpolating polynomial

p�d� � ui � dt�h0�ui�� � d2

2
qi ;

where

qi �
t�h0�ui�� ÿ t�h0�uiÿ1��

Dui
; Dui � ui ÿ uiÿ1 :

It is easy to verify that

p�0� � ui; p0�0� � t�h0�ui��; p0�ÿui� � t�h0�uiÿ1�� :
The equation

kp�d� ÿ ui�1�d�k � d2

2
qi

gives an estimate of the distance between the tangent line
(see Eq. 14) and the solution curve c�s�. Hence, if a
di�erence that is equal to a given tolerance e > 0 at most
is accepted, then a step length

si�1 �
���������
2e
kqik

s
should be chosen.

Procedure PATH which is given in the appendix re-
quires to evaluate the Hessian matrix at the starting
point at most. The gradient has to be computed twice in
each cycle. The walking method [12, 13, 15] needs one
gradient and the direction of ascent (or descent) per
cycle. Since the direction of ascent (descent) is deter-
mined by an eigenvector of the Hessian matrix, the nu-
merical e�ort of the walking method will be higher than
that of the homotopy method if the Hessian matrix is
evaluated in each cycle. If the Hessian matrix is updated,
per cycle the numerical e�ort of the walking method will
be less than that of the homotopy method. In this case,
however, there is no guarantee that the updated matrix
and the Hessian matrix possess the same numbers of
negative and positive eigenvalues, especially in the vi-
cinity of a saddle point [3]. The essential advantage of
the homotopy method is that a well-de®ned curve is
followed which leads to a stationary point with proba-
bility one. Only the di�erential equation methods [16,
17] possess a similar property. But, the trajectories may
meander in some vicinity of a stationary solution.
Moreover the homotopy method provides information
about the stationary point a priori. The procedure
PATH is included in the TURBO-PASCAL program
package EYRING [18] which uses a MINDO/3-energy
function [19]. An a-version of the program package can
be obtained from the authors on request.

6 Test results

Some results of an extensive testing are presented
subsequently. Note that convex homotopy always means
that M � H�x0� has been chosen; cf. Sect. 4. The
Hessian matrices have been computed numerically.

6.1 MuÈller-Brown potential

First the procedure PATH has been tested on the
MuÈ ller-Brown potential which is de®ned in [20]. The
results obtained by means of the standard, convex and
Marquardt homotopy are given in Table 1. To show
that the homotopy method works globally an initial
guess x0 has been chosen that will hardly belong to the
domain of attraction of an iterative root ®nding method.
By standard and convex homotopy all known stationary
points were located along one path. The solutions have
been re®ned to an accuracy of kg�x�k < 10ÿ4. The curves
of con®gurations are plotted in Fig.s. 4 and 5. Observe
that minimizers and saddle points alternate along the

Fig. 3. Predictor-corrector method: u1 and w2 are accepted
corrector points whereas w1 is a rejected corrector (see procedure
PATH)
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curves, just as the theory says; see Sect. 3. By the
Marquardt homotopy only one minimizer was discov-
ered. The search for further stationary points stopped as
the embedding parameter exceeded the limit qmax. Thus
the Marquardt homotopy comes out worst in the testing
because: (1) it has located only one minimizer and (2) it
needed signi®cantly more predictor-corrector steps than
the two other homotopies to locate this point.

When the d-trick homotopy is employed to locate
additional stationary points the d-vector should be
chosen very carefully, because numerical problems can
occur if d equals an eigenvector of the Hessian matrix.
At a solution point u � �x; q� of Eq. (13) the tangent
vector t�h0�u�� � � _x>; _q�> ful®lls Eq. (12). If �d; k� is

an eigenpair of H�x�, then t�h0�u�� � a�d>; k�> with
jaj � �kdk2 � k2�ÿ1=2. Now, if k is very large in magni-
tude, the Euclidean norm of the vector ad becomes very
small and jakj � 1. Hence the changes in the coordinate
vector x are very small (they may even become insig-
ni®cant) whereas the changes in the embedding param-
eter are very large. In such a situation the path tracing
procedure becomes numerically instable and the number
of predictor-corrector steps increases rapidly. Such nu-
merical instabilities can be avoided by choosing d so that
the components of d are of about the same magnitude as
the corresponding eigenvalue. All that is convincingly
demonstrated by the results given in Table 2. Di�erent
d-vectors need not lead to di�erent stationary points,
even if the d-vectors are eigenvectors; see Table 2 and
Fig. 6. On the other hand, by using one and the same
d-vector di�erent stationary points may be located if the
homotopy path is traced in both directions.

Observe that the path tracings started at the mini-
mizer m2, end at the saddle point s1 or s2 (see Table 2
and Fig. 6). The path tracings started at the saddle point
s1, end at the minimizer m1 or m2. Thus the procedure
PATH can be employed as both an uphill and a downhill
procedure.

6.2 Hydrocyanic-acid MINDO/3-PES

The HCN/CNH rearrangement is often used to test
saddle-point search procedures. Independently of the

Table 1. MuÈ ller-Brown potential. Results of homotopy path
tracings started at �1:0; 0:0�>

Solutiona PC-steps

Standard
homotopy

Convex
homotopy

Marquardt
homotopy

m1 15 28 80
s1 67 63 ±
m2 43 47 ±
s2 37 43 ±
m3 167 92 ±

total 329 273

a See Fig. 4

Fig. 4. MuÈ ller-Brown potential. Curve of con®gurations of the
standard homotopy path (cf. Table 1)

Fig. 5. MuÈ ller-Brown potential. Curve of con®gurations of the
convex homotopy path (cf. Table 1)

Table 2. MuÈ ller-Brown poten-
tial. Results of d-trick homoto-
py path tracings

a cf. Fig. 4
b vi denotes i-th eigenvector of
the Hessian matrix at the initial
point
c See procedure PATH in ap-
pendix

Initial data Results

Pointa d-vectorb DIRc Solutiona PC-steps qcmax

m2 v1 1 s1 1266 48.71
m2 10 v1 1 s1 255 5.77
m2 102 v1 1 s1 67 1.48
m2 103 v1 1 s1 32 1.05
m2 103 v2 1 s1 36
m2 103 v1 )1 s2 45
m2 103 v2 )1 s2 74
s1 v2 1 m2 29
s1 v2 )1 m1 69
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choice of the energy function about 8±10 gradient calls
are needed in general to determine the transition
structure of the HCN/CNH isomerization [16, 17, 21].
Using the standard homotopy ®ve cycles (� 10 gradient
calls) were needed to locate the saddle point (starting
con®guration [17]: r(HC) � 1:211 AÊ , r(CN) � 1:182 AÊ ,
��HCN� � 71:3�). Thus the homotopy method does not
work less e�ciently than other methods in this case.

6.3 Formaldehyde MINDO/3-PES

Using the initial guesses given in Table 3 and the
minimizer m (see Fig. 7) stationary-point searches have
been carried out. The results are summarized in Table 4.
For all solutions the Euclidean norm of the gradient is
smaller than 2:5� 10ÿ5. Since the numerical e�ort
necessary to locate a stationary point is determined
above all by the total number of predictor-corrector
(PC) steps and the evaluation of the Jacobian matrix at
the starting point (cf. Eqs. 7±11), the total number of
gradient calls (#g) has been chosen as a measure of the
numerical e�ort. Particularly, each PC-step requires two
gradient calls, while an approximation to the reduced
Hessian matrix requires 2�3nÿ 6� gradient calls (central
di�erences). Although the Marquardt homotopy does
not require any evaluation of the Hessian matrix (see
Eq. 10), the procedure PATH is not less e�cient when
the standard homotopy is used; see Table 4. Procedure
PATH started at guess �x2; 0� failed when the Mar-
quardt homotopy was used. The standard homotopy
locates two stationary points where the second station-
ary point is of even order (in this case a minimizer) just
as the theory says; cf. Eq. (6).

The d-trick homotopy started at the minimizer m
needed considerably more steps than the standard or the
convex homotopy to locate the saddle point s1. The main
reason is that the distance between the con®gurations m
and s1 is considerably larger �kmÿ s1k � 1:36 ÊA� than
that between x2 and s1�kx2 ÿ s1k � 0:22 ÊA�. The saddle
point s2 could be localized only by the d-trick homotopy.
The walking method proposed by Cerjan and Miller
needed 11 cycles (at STO-2G level) to step from the
formaldehyde minimizer m to the transition structure s1
[12]. However, the numerical e�ort per cycle is consid-
erably larger for the employed walking method than for
the homotopy method because in each cycle a ®nite
di�erence approximation to the Hessian matrix was
computed. It should be stressed here once more that the

Fig. 6. MuÈ ller-Brown potential. Curves of con®gurations of the d-
trick homotopy paths (cf. Table 2)

Table 3. Formaldehyde MINDO/3-potential energy surface PES.
Initial con®gurations

x1 x2

C 0.0 0.0 0.0 0.0 0.0 0.0
O 1.2 0.0 0.0 1.2 0.0 0.0
H )1.0 0.6 0.0 )1.0 0.5 0.0
H 1.0 0.0 0.0 )0.5 1.4 0.0

Table 4. Formaldehyde MIN-
DO/3-PES. Results of path
tracings

a See Table 3 and Fig. 7
b d1 � 6ÿ1=2�1; . . . ; 1�>; d2
equals the reduced lowest
frequence mode
c See procedure PATH in
appendix
d See Fig. 7
e See text

Homotopy Initial data Results

Guessa d-vectorb DIRc Solutiond PC-steps #ge

Standard x1 m 23 58
x2 s1 12 36

m 124 248
Convex x1 m 27 66

x2 s1 15 42
Marquardt x1 m 28 56
d-trick m d1 1 s1 130 272

m d1 )1 s2 96 204
m d2 1 s2 54 120

Fig. 7. H2CO-system
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essential advantage of the homotopy method is that it
follows a well-de®ned path which leads to a stationary
point with probability one. Saddle-point searches nor-
mally require a large number of trial and error optimi-
zations which easily may require a large computational
e�ort. Therefore, if the total computational e�orts are
compared, the homotopy method is an e�cient tool to
locate stationary points.

6.4 Ethyl cation MINDO/3-PES

Searches for stationary points have been carried out
using the initial guesses given in Table 5. The solutions
have been re®ned to an accuracy of 5� 10ÿ5. The test
results summarized in Table 6 con®rm the results above:
(1) procedure PATH is an e�cient tool to locate
stationary points of energy functions, (2) using the
standard homotopy the procedure is most e�cient, (3)
using the Marquardt homotopy saddle points can only
be detected after passing through a minimizer.

7 Summary

The homotopy method is an e�cient tool to explore
large parts of PESs. Especially, if only poor guesses are

available, the homotopy method locates both minimizer
and saddle points in an e�cient manner. More than one
stationary point can be discovered along a homotopy
path, where stationary points of odd and even order
occur alternately. The standard homotopy should be
preferred in general. If only minimizers are desired the
Marquardt homotopy should be chosen. If a stationary
point is known, additional stationary points can be
determined by means of the d-trick homotopy. If this
homotopy is used, a path tracing started at a minimizer
always leads to a saddle point.

Acknowledgements. The authors wish to thank Dr. H. Herrler for
assistance in preparing the plots. One author (W.K.) thanks the
Deutsche Forschungsgemeinschaft Bonn (Germany) for a grant.

Appendix

Procedure PATH

Notations

x; y; z: points of R3nÿ6
u; v;w: points of R3nÿ6 �R, i.e. u � �x; q�, v � �y; q�,

w � �x; q� etc.
Input (default values in parentheses)

x0 initial guess
s0 (0.05) initial step size
smax (0.1) maximal step size
smin �1:0ÿ6� minimal step size
b (0.5) reduction factor for step size

control
jmax (0.4) maximal Newton contraction
dmax (0.2) maximal distance to zero

Table 5. Ethyl cation MIND-
O/3-PES. Initial con®gurations x1 x2 x3

C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 1.4 0.0 0.0 1.4 0.0 0.0 1.4 0.0 0.0
H )0.6 0.0 1.0 )0.5 )1.0 0.0 )0.5 )1.0 0.0
H 0.6 1.0 0.0 )0.5 0.5 1.0 0.5 0.0 1.0
H 2.0 0.0 )1.0 2.0 1.0 0.0 2.0 1.0 0.0
H 2.0 0.0 1.0 2.0 )1.0 0.0 2.0 )1.0 0.0
H )0.6 0.0 )1.0 0.0 0.5 )1.0 )0.5 1.0 0.0

Table 6. Ethyl cation MIND-
O/3-PES. Results of path tra-
cings

a See Table 5 and Fig. 8
b See Fig. 8
c See text

Homotopy Initial data Results

Guessa d-vector Solutionb PC-steps #gc

Standard x1 m 12 54
x2 s 41 112

Convex x1 m 14 58
x2 s 53 141

Marquardt x1 m 29 58
x2 m 126 252
x3 m 45 120

s 148 296
d-trick m 15)1/2(1,. . .,1)> s 180

m reduced mode
to lowest
frequence

s 245

Fig. 8. C2H
�
5 -System

262



dmin �1:0ÿ5� minimal distance to zero
amax �12�� maximal angle between new and

old tangent vectors
qmax (50) maximal value of the embedding

parameter
e1 �10ÿ3� maximal predictor error
e2 �10ÿ5� stopping error for path tracing
e3 �1:5 � 10ÿ6� stopping error for quasi-Newton

iterations
FMax (10) maximal number of subsequently

rejected steps
citr (5) maximal angle between vectors a

and b (see step 7)
Dir (1) path tracing direction (1 or )1)

1. Initialization
u :� �x0; 0�; s :� s0; B :� h0�u� �cf: Eqs. (7)±(11)).

2. Compute the initial tangent t�B� from the equations
At�B� � 0; kt�B�k � 1; sign det�A> t�B�� � Dir
(see Theorem 5).

3. Determine the Moore-Penrose inverse
By :� B>�BB>�ÿ1.

4. Predictor step
v :� u� st�B�.

5. Corrector step
w :� vÿ By�h�v� ÿ p�; kh�v� ÿ pk � dmin:

6. Update step
a� :� By�h�v� ÿ p�;
a :� a�=ka�k;
b :� By�h�w� ÿ p�=ka�k;
# :� 1ÿ a>b;

By :� I � ba>

#

� �
By

t :� sign �#� t�B� ÿ By�h�v� ÿ h�u��
kt�B� ÿ By�h�v� ÿ h�u��k ;

By :� �I ÿ t�B�t�B�>�By:
7. Compute the control quantities

a :� arccos�t�B�; t�
�angle between old and new tangent vector�;

d :� kh�w� ÿ pk
(distance to zero);

c :� arccos�a; b=kbk�
�angle between Newton steps a and b�;

j :� kbk
�Newton contraction�:

8. Step size control
if jsÿ 1j < e2 then goto step 9
if �a < amax� ^ �d < dmax� ^ �j < jmax� then

fails :� 0

s :� min

�����������������������
2e1kuÿ wk
ktÿ t�B�k

s
; smax

 !
u :� w

t�B� :� t

else

fails :� fails� 1

t�B� :� t

s :�max�bs; smin�
if �q� st�B�3nÿ5 > 1� then s :� �1ÿ q�=t�B�3nÿ5
if �fails > FMax� then exit
else go to step 4.

9. Final iteration

if c < citr then
± save the vectors u and t�B� and the Moore-Penrose

inverse By,
± improve u by the iteration ui�1 � ui ÿ Byh�ui�.

10. Continuation
if the curve tracing is to be continued then

reproduce u; t�B� and By and go to step 4
else stop.

Remarks

1. The direction parameter Dir does not coincide with
the orientation of the solution curve (cf. Sect. 3).
Dir � 1�ÿ1� means that the solution curve is followed so
that the embedding parameter q is an increasing
(decreasing) function along the curve, at least at the
beginning.

2. Vector p in steps 5 and 6 improves the numerical
stability of the corrector step. It is chosen so that the
norm of a� can never become too small to compute the
vectors a and b.

3. In step 8 a point u is accepted as an approximate
curve point if:

a) the angle a between the old and new tangent is not
too large (a small change in u should imply a small
change in the tangent vector),

b) the Newton contraction kbk, i.e. the quotient of the
length of the second and the ®rst Newton corrector, is
not too large and

c) the value of the homotopy function di�ers from zero
only within a prescribed tolerance.

4. The control quantity c is the angle between the
®rst and the second Newton direction. It is only of
interest for the execution of step 9. If c is su�ciently
small some quasi-Newton steps are performed to im-
prove the accuracy of the located stationary point.
But, the larger c, the farther the iterates can run away
from the target hyperplane q � 1. Therefore a quasi-
Newton iteration is not carried out if c exceeds some
limit angle citr.

5. If the embedding parameter q is greater than 1 in
the corrector step, the step is repeated with a smaller step
size such that the predictor step just reaches the level
s � 1. This is the last instruction in the ``then'' part of
step 8.

6. If the number of subsequently rejected steps ex-
ceeds a given number FMax often the curve tracing
procedure cannot pass through a bifurcation point. In
this situation the procedure should be restarted.
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